取石子(一)
时间限制: 3000 ms | 内存限制: 65535 KB
难度: 2
- 描述
- 一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子。游戏的规则是这样的。设有一堆石子,数量为N(1<=N<=1000000),两个人轮番取出其中的若干个,每次最多取M个(1<=M<=1000000),最先把石子取完者胜利。我们知道,TT和他/她的室友都十分的聪明,那么如果是TT先取,他/她会取得游戏的胜利么?
- 输入
- 第一行是一个正整数n表示有n组测试数据 输入有不到1000组数据,每组数据一行,有两个数N和M,之间用空格分隔。 输出
- 对于每组数据,输出一行。如果先取的TT可以赢得游戏,则输出“Win”,否则输出“Lose”(引号不用输出) 样例输入
-
21000 11 100
样例输出 -
LoseWin
来源 - 上传者
题解:
一开始低估了这个难度为2的问题,却发现却不是那么的简单,查了资料,原来是博弈问题
巴什博奕(Bash Game): 只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。 显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
#include
int main(){ int t; scanf("%d", &t); while (t--) { int n, m; scanf("%d%d", &n, &m); if (n % (1 + m)) printf("Win\n"); else printf("Lose\n"); } return 0;}